Skip to main content

Android Activity


An activity is a single, focused thing that the user can do. Almost all activities interact with the user, so the Activity class takes care of creating a window for you in which you can place your UI with setContentView(View). While activities are often presented to the user as full-screen windows, they can also be used in other ways: as floating windows (via a theme with windowIsFloating set) or embedded inside of another activity (using ActivityGroup). There are two methods almost all subclasses of Activity will implement:
  • onCreate(Bundle) is where you initialize your activity. Most importantly, here you will usually call setContentView(int) with a layout resource defining your UI, and using findViewById(int) to retrieve the widgets in that UI that you need to interact with programmatically.
  • onPause() is where you deal with the user leaving your activity. Most importantly, any changes made by the user should at this point be committed (usually to the ContentProvider holding the data).
To be of use with Context.startActivity(), all activity classes must have a corresponding <activity> declaration in their package's AndroidManifest.xml.
Topics covered here:
  1. Fragments
  2. Activity Lifecycle
  3. Configuration Changes
  4. Starting Activities and Getting Results
  5. Saving Persistent State
  6. Permissions
  7. Process Lifecycle

Developer Guides

The Activity class is an important part of an application's overall lifecycle, and the way activities are launched and put together is a fundamental part of the platform's application model. For a detailed perspective on the structure of an Android application and how activities behave, please read the Application Fundamentals and Tasks and Back Stack developer guides.
You can also find a detailed discussion about how to create activities in the Activities developer guide.

Fragments

Starting with HONEYCOMB, Activity implementations can make use of the Fragment class to better modularize their code, build more sophisticated user interfaces for larger screens, and help scale their application between small and large screens.

Activity Lifecycle

Activities in the system are managed as an activity stack. When a new activity is started, it is placed on the top of the stack and becomes the running activity -- the previous activity always remains below it in the stack, and will not come to the foreground again until the new activity exits.
An activity has essentially four states:
  • If an activity in the foreground of the screen (at the top of the stack), it is active or running.
  • If an activity has lost focus but is still visible (that is, a new non-full-sized or transparent activity has focus on top of your activity), it is paused. A paused activity is completely alive (it maintains all state and member information and remains attached to the window manager), but can be killed by the system in extreme low memory situations.
  • If an activity is completely obscured by another activity, it is stopped. It still retains all state and member information, however, it is no longer visible to the user so its window is hidden and it will often be killed by the system when memory is needed elsewhere.
  • If an activity is paused or stopped, the system can drop the activity from memory by either asking it to finish, or simply killing its process. When it is displayed again to the user, it must be completely restarted and restored to its previous state.
The following diagram shows the important state paths of an Activity. The square rectangles represent callback methods you can implement to perform operations when the Activity moves between states. The colored ovals are major states the Activity can be in.
State diagram for an Android Activity Lifecycle.
There are three key loops you may be interested in monitoring within your activity:
  • The entire lifetime of an activity happens between the first call to onCreate(Bundle) through to a single final call to onDestroy(). An activity will do all setup of "global" state in onCreate(), and release all remaining resources in onDestroy(). For example, if it has a thread running in the background to download data from the network, it may create that thread in onCreate() and then stop the thread in onDestroy().
  • The visible lifetime of an activity happens between a call to onStart() until a corresponding call to onStop(). During this time the user can see the activity on-screen, though it may not be in the foreground and interacting with the user. Between these two methods you can maintain resources that are needed to show the activity to the user. For example, you can register a BroadcastReceiver in onStart() to monitor for changes that impact your UI, and unregister it in onStop() when the user no longer sees what you are displaying. The onStart() and onStop() methods can be called multiple times, as the activity becomes visible and hidden to the user.
  • The foreground lifetime of an activity happens between a call to onResume() until a corresponding call to onPause(). During this time the activity is in front of all other activities and interacting with the user. An activity can frequently go between the resumed and paused states -- for example when the device goes to sleep, when an activity result is delivered, when a new intent is delivered -- so the code in these methods should be fairly lightweight.
The entire lifecycle of an activity is defined by the following Activity methods. All of these are hooks that you can override to do appropriate work when the activity changes state. All activities will implement onCreate(Bundle) to do their initial setup; many will also implement onPause() to commit changes to data and otherwise prepare to stop interacting with the user. You should always call up to your superclass when implementing these methods.

Comments

Popular posts from this blog

Login Application using Database with dialog demo

Follow Below Steps for make simple login applicaiton in Android using database with Dialog demo. 1)DataBaseDemoActivity.java This file diplay login page and trasfer two edit text data into second activity........  package database.co.in; import android.app.Activity; import android.content.Intent; import android.os.Bundle; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.widget.EditText; public class DataBaseDemoActivity extends Activity implements OnClickListener {     /** Called when the activity is first created. */     EditText mtxt_email, mtxt_password;     Button mLogin; @Override     public void onCreate(Bundle savedInstanceState) {         super.onCreate(savedInstanceState);         setContentView(R.layout.main);         mtxt_email = (EditText)findViewById(R.id.editEmail_id);   ...

Audio Recording in Android

Simple State Diagram for Media Recorder... Here Sequence of Method call is as per state diagram of media Recorder .... Otherwise Invalid sate call Error will be Occur........ Steps: 1) Also her two permission add in Android manifest file <uses-permission android:name="android.permission.RECORD_AUDIO" /> <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> 2) This is java file coding  audiorecording.java package com.example.recording; import java.io.File; import java.io.FileDescriptor; import android.media.MediaRecorder; import android.os.Bundle; import android.os.Environment; import android.provider.MediaStore; import android.app.Activity; import android.app.AlertDialog; import android.app.Dialog; import android.content.DialogInterface; import android.view.Menu; import android.view.MenuItem; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import ...